Assessing and Helping Challenging Students: Part One, Why Do Some Students Have Difficulty Learning?

William D. Hendricson, M.S., M.A.; John H. Kleffner, Ed.D.

Abstract: When students struggle with routine assignments and fall behind classmates, a busy teacher may pigeonhole them as slow, give up on them, or become frustrated from failed efforts to bring them up to speed. Well-intentioned efforts to help struggling students by providing repetitions of the same experiences may fail because the specific cause of the sub-par performance was not identified. Six potential causes of inadequate student performance can serve as a diagnostic framework to help teachers pinpoint why a student is struggling academically: 1) cognitive factors, including poorly integrated, compartmentalized information, poor metacognition that hinders the student’s ability to monitor and self-correct performance, bona fide learning disabilities that require professional assessment and treatment, and sensory-perceptual difficulties that may hinder performance in certain health care disciplines; 2) ineffective study habits, which are more common among professional students than faculty realize; 3) an inadequate educational experience (unclear objectives, poorly organized instruction, absence of coaching and timely feedback) or a punitive environment in which students avoid approaching instructors for assistance; 4) distraction due to nonacademic issues such as social relationships, health of a spouse, or employment; 5) dysfunctional levels of defensiveness that hinder student-teacher communication; and 6) underlying medical conditions that may affect student attentiveness, motivation, energy, and emotional balance. The objective of this article is to help faculty recognize potential underlying causes of a student’s learning problems. Strategies for helping the academically struggling student are also introduced for several of these etiologies.

Mr. Hendricson is Director, and Dr. Kleffner is former Educational Development Specialist, both at the Division of Educational Research and Development, Department of Academic Informatics Services, The University of Texas Health Science Center at San Antonio. Direct correspondence and requests for reprints to William Hendricson, Director, Division of Educational Research and Development, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900; 210-567-2813 phone; hendricson@uthscsa.edu.

Key words: learning, dental students, curriculum, teaching methods

Submitted for publication 9/14/01; accepted 11/15/01

Editor’s Note: Part two of this study will appear in a subsequent issue of the Journal of Dental Education.
• Has difficulty learning or performing up to expectations,
• Is distracted and does not devote full attention to academic responsibilities,
• Is difficult or unpleasant to work with; for example, has an attitude problem or is defensive, and
• Does not appear to be motivated to learn.

The senior author (Hendricson) frequently conducts workshops on teaching difficult students. The first workshop exercise asks participants to propose adjectives that describe students who are challenging and students whom teachers enjoy. Adjectives assigned to challenging students appear below on the left; on the right are words that describe learners whom teachers enjoy.

<table>
<thead>
<tr>
<th>Students who are challenging or difficult</th>
<th>Students whom teachers enjoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethargic, listless, lazy</td>
<td>Enthusiastic, energetic, eager</td>
</tr>
<tr>
<td>Disorganized (don’t use time wisely)</td>
<td>Motivated; have inner drive</td>
</tr>
<tr>
<td>Frequently repeat the same mistakes</td>
<td>Learn from mistakes</td>
</tr>
<tr>
<td>No initiative (expect to be spoonfed)</td>
<td>Volunteer for tasks and extra work</td>
</tr>
<tr>
<td>Not punctual and ignore rules</td>
<td>Punctual and follow directions</td>
</tr>
<tr>
<td>Indifferent (don’t appear to care; emotionless)</td>
<td>Put in extra time (arrive early; leave late)</td>
</tr>
<tr>
<td>Defensive (hostile when feedback is given)</td>
<td>Ask for feedback on their performance</td>
</tr>
</tbody>
</table>

We will focus here on the left hand column—the challenging student. The objective is to help dental educators understand and assess factors that may cause dysfunctional student behavior in two areas: performance (how students acquire knowledge and learn to perform skills) and attitude (the way students interact with others in the academic environment). Attitudinal issues are often intertwined with the student’s performance difficulties in either a causal or reactive relationship. This article will focus on the potential causes of substandard performance by presenting a series of diagnostic questions designed to help faculty identify the underlying etiology of the learning deficiency. Strategies for helping the student with learning difficulties will also be introduced. A companion article in a subsequent issue of the Journal of Dental Education will review the causes of inappropriate and dysfunctional student behavior such as acute defensiveness, apathy, and belligerence; explore reasons for apparent lack of motivation among some students; and present a protocol for conducting an “educational intervention” with a challenging student.

Assessing and Diagnosing the Etiology of Challenging Student Behavior

In the authors’ collective sixty years of experience in health professions education, most cases of challenging student behavior can be classified into the categories presented in Figure 1:

• learning problems, which are reflected in performance consistently below expectations or a sudden decline in performance by a student who has a solid academic record; and
• attitudinal issues, which include a variety of behavioral manifestations among students that are perplexing, frustrating, and, in extreme cases, unacceptable to faculty and disruptive to the overall learning environment.

Underlying medical conditions, including psychological problems, may contribute to substandard performance or undesirable behaviors and attitudes. The student may or may not be aware of medical problems or may attempt to obscure medical conditions, including chemical dependency, from student peers and faculty.

In relation to the attitudinal issues displayed in Figure 1, the authors have observed faculty to be particularly perplexed and frustrated by three types of behavior: acute defensiveness that hinders student-teacher communication and thus the quality of the learning experience; lack of personal motivation; and the “cocky” know-it-all attitude of students who have a high estimation of their ability, sometimes deserved and sometimes not. Defensiveness, lack of motivation, and know-it-all demeanor can be the behavioral manifestations of underlying learning deficiencies or medical problems. Defensiveness and a passive approach to learning, which are often perceived as a lack of motivation, appear to be intertwined with the student’s sense of safety within the academic envi-
Assessing Causes of Learning Deficiency

The etiology of learning deficiencies is complex and can involve a variety of factors often acting in concert. Six factors should be considered when a student has difficulty learning. These are briefly described here and then explored in more detail below.

The first factor is cognition. Abnormalities can occur related to how the student acquires, processes, stores, and retrieves information. For example, students may advance to the clinical phase of the curriculum with poorly integrated knowledge because of curriculum format, teaching methods, or the student’s study strategies. These students may have difficulty retrieving the information needed to answer questions asked by instructors or “thinking on their feet” to cope with unexpected events that occur during patient treatment. Metacognition, which is the ability to self-assess the quality of performance and make corrections, varies considerably from person to person. People with poor metacognition cannot distinguish accuracy from error and have inflated impressions of their abilities. It is not out of the realm of possibility that an underperforming dental student may have an undiagnosed learning disability that requires professional intervention. People differ in their ability to recognize spatial relationships among objects and perceive small differences in shape, size, position, and texture. For some students, difficulties with spatial-perceptual tasks may be due to the way their brains process information received from the environment.

The second factor is study habits. Ineffective study methods may contribute to substandard learning. Quality of the academic environment is third. Sometimes the overall curriculum is so poorly conceived or implemented that learning becomes difficult even for the best students. Student distraction is fourth. Stressful, time-consuming, and energy-sapping events in a student’s life outside school can overwhelm even highly motivated students and contribute to inadequate academic performance. Fifth is the affective component of learning. Learners evolve through an emotional development continuum as they progress through the stages of professional training. During this maturation process, a student’s self-concept as a learner and attitudes about the task of learning change substantially. These evolving attitudes play an important role in student-teacher interactions, often by creating a wall of defensiveness that hinders communication and helps shape the teacher’s perception of the student, sometimes in a negative manner. Sixth are underlying medical problems. If all other causes of inadequate performance are ruled out, is it possible that an underlying health problem is the catalyst for the student’s academic struggles? Chemical imbalances, chronic stress, the effects of aging, and certain systemic diseases can alter the chemical environment and his or her “survival” strategy (that is, making it to graduation day).
basis of memory formation and contribute to attention deficits, loss of concentration, lack of energy, mental confusion, and emotional disorders.

This section presents diagnostic questions for each of these six factors that may contribute to substandard learning.

Cognition: The Student’s Thinking Processes

Teachers should consider the following questions when a student exhibits learning deficiencies that cannot be explained by other factors.

Does the Student Have Poorly Networked Knowledge? This question will receive the most attention because it has implications for the overall educational process. There have been dramatic breakthroughs in our understanding of brain function and the neurophysiological mechanisms of learning and memory. A principle outcome of brain research is a better understanding of the neurophysiological mechanisms involved in the creation of knowledge networks. These neurocognitive networks appear to underlie many aspects of memory, pattern recognition, and decision-making. The word “appear” in the previous sentence is emphasized because we are still several decades away from definitive answers about how expertise develops. For now, we can say that the available evidence is suggestive but not conclusive.

Figure 2 schematically represents probable differences in the way novices and experts mentally structure information they acquire from various sources and experiences. Novices’ information, represented by the left panel, is vertical and compartmentalized. When confronted with a task or problem new to them, novices struggle in a trial and error manner to assemble isolated bits of information, represented by the various symbols within the columns, because they lack pre-existing networks that allow fast retrieval of pertinent information. Students may have encyclopedic information about topics introduced in the curriculum, but this information is compartmentalized and largely unlinked to other topics. To develop problem-solving ability, students must convert the largely unorganized fragments of data absorbed from textbooks and lectures into interlinked chains of networked knowledge. Knowledge is de-

Figure 2. Differences between novices’ and experts’ mental organization of information

fined as information that individuals can explain in their own words, has recognized value and utility, and can be retrieved instantaneously to solve problems.5-11 The conversion process of taking isolated bits of information and consolidating them into useful knowledge is the core of the constructivism theory of learning which is the prevailing educational model among cognitive psychologists today.12 Experts (see the right panel of Figure 2) have developed networks that allow rapid retrieval of chains of knowledge relevant to solving a problem. Cognitive psychologists refer to this interlinked configuration by various names such as horizontally networked knowledge, elaborated knowledge, or spider web knowledge.13-17

Classic symptoms of a student with poorly integrated knowledge include the following: long-winded, circuitous answers to questions that never get to the point; the inability to look at clinical data and recognize an obvious pattern (for example, to recognize that $2 + 2 = 4$); the inability to move beyond obvious surface features when discussing a patient’s problems (versus discussing important underlying etiologies); difficulty explaining relationships among patient care variables (for example, how two drugs such as coumadin and captopril might alter each other’s pharmacokinetics and affect the patient’s cardiac and pulmonary function); the inability to compare and contrast physiologic mechanisms (for example, the differences between hypovolemic and cardiogenic shock); and a phenomenon known as “anchoring” in which the student fails to recognize the need to change an opinion or a patient care plan when new or different information becomes available that changes the situation.18

We have observed three types of students who exhibit poorly integrated knowledge.

Type I students are in over their heads; they attempt to solve problems or perform tasks without adequate prerequisite learning experiences. Type II students are at a natural stage of cognitive development along the novice-to-expert continuum where a fragmented, poorly integrated knowledge base is the norm. Type III students may have unique difficulties putting it all together that extend beyond the normal struggles of the novice learner. Type I students are frequently the result of a curriculum that has inadequate assessment methods at the foundational level of the program (for example, tests that emphasize memorization of facts rather than the ability to apply information to problems), or they are individuals who did not take full advantage of learning opportu-

nities for one or more of the reasons discussed later in this paper but manage to move ahead because of testing that measures relatively low levels of cognition function.

A number of studies have established an association between the overall structure of the curriculum, the way students study and prepare for tests, and the depth at which they learn the subject matter of courses.19-24 An active-learning environment in which students are frequently asked to assess data, make decisions, and explain the thinking underlying their decisions appears to be our best bet for helping students build integrated knowledge.9,11,25-26 Unfortunately, many health professions students are the products of undergraduate or preclinical curricula in which they spent hundreds of hours sitting in a lecture hall listening (perhaps) to lectures. These students arrive in the clinical environment ill-prepared to assess patient problems or even to answer questions that teachers perceive to be very easy.

The traditional smokestack or “silo” curriculum has been the prevailing model for the health professions education for decades.27-28 In this type of curriculum, each discipline operates autonomous mini-curricula, educating students independently with minimal cross-fertilization among disciplines. Structurally, the silo curriculum is organized much like the left side of Figure 2. The student graduates and is assumed to be competent when all courses in each of the discipline-based silos are passed. However, there is growing discontent with this model. The Institute of Medicine-National Academy of Science report \textit{To Err Is Human: Building a Safer Health Care System} examined the reasons for patient care errors that contribute to approximately 75,000 deaths and several hundred thousand near-misses annually within health care facilities.29 Numerous contributing factors were identified including three educational causes: 1) reliance on silo curricula and passive, sponge-learning during training produces entry-level practitioners with poor knowledge integration, poor vigilance for errors, and inadequate coping skills when problems occur; 2) entry-level practitioners lack training in information management systems and thus rely on memorization on the job; and 3) there is a lack of opportunity to practice problem-solving during training and on the job.

Given the reliance on silo curricula in health professions education, clinical teachers should anticipate that many students will struggle with problem-solving tasks. Research indicates that one of the
most effective strategies to help students develop the mental muscle needed for problem-solving—as well as one of the easiest and least resource-intensive to implement—is to create a learning environment in which instructors make it a goal to frequently ask questions that help students “connect the dots.” Connect-the-dot questions provide students with opportunities to think about and verbalize their understanding of the relationships between isolated bits of information acquired throughout the curriculum. Responding to connect-the-dot questions, which requires students to pull together information acquired from different sources, has been shown to be a powerful technique for building deeper understanding of concepts and principles. The students’ process of building personal meaning by articulating their understanding and interpretation of information in their own words may be the most critical step in the process of learning. Connect-the-dot questions include: decision questions (What do you think we should do for this patient?), why questions (Why do you think this is our best option?), how questions (How can we perform that procedure given the patient’s condition?), what-if questions (What should we do if the patient cannot tolerate the splint?), and dig deeper questions (That’s a good idea, but can you think of any other dietary plans we can recommend for this patient?). These types of questions require students to assemble their explanations from different information compartments and thus have been linked to higher levels of comprehension.

The cognitive tasks involved in assessing the intent of a decision question (for example, what should we do next for this patient and why?), mentally selecting information pertinent to the query, linking this information to construct an answer, verbalizing (or writing) the answer, offering a supportive rationale for the decision, and answering follow-up questions to further clarify, modify, or justify the response can help learners start to make sense of the mass of information they have absorbed in the curriculum. Through repetitions of similar cognitive events (such as frequently answering connect-the-dots questions), neuronal linkages are established and a memory of the response to a particular situation or question becomes more deeply ingrained, thus increasing the potential for prompt retrieval in the future. As described in the Robertson article, it appears that neuron-to-neuron connections are strengthened by repetition of experience. Repetition produces coordinated activation of a network of neuronal connections; the more repetition, the easier it is for the same neuronal pathway to reactivate in subsequent situations. The process of making it easier for neuronal pathways to reactivate may be the basis for how memories are created. Students who struggle with rudimentary problem-solving tasks appear to particularly benefit from frequent participation in very focused problem-solving conferences in which teachers use the questioning techniques previously described to help learners practice answering questions and then provide specific feedback to help students compare and contrast their responses to an ideal response.

We must add one note of caution. In our careers, we have observed countless health professions faculty unfairly label students as substandard learners before they have even begun the lengthy process of creating these knowledge networks. Faculty expectations, particularly early in the clinical phase of training, are often skewed too high. Novice learners may be expected to assess patient problems and reach decisions just as quickly as experienced faculty, which is an unreasonable and inappropriate expectation. To help faculty guard against the unreasonable-expectation phenomenon in medical education, Pangaro et al. developed the R-I-M-E model and a variation of this model adapted for dental education appears in Figure 3. This model identifies desirable levels of performance that can be expected of learners as they progress through the educational continuum (reporter, interpreter, manager, educator). The level of performance appropriate and expected for students at each of the four levels of training is identified in the text. The sentence in bold at the conclusion of each skill-level description indicates level-appropriate assessment criteria for students at that particular phase of the curriculum. For example, assessment of students at the reporter level (an early phase of clinical training) should measure the completeness and accuracy of the students’ data collection (by history-taking and patient examination) and the clarity and accuracy of their verbal and written reports about the patient’s health. Students at this ground floor level should not be assessed on their ability to make diagnostic decisions about patient care that is appropriate only for learners on subsequent rungs of the ladder. This model is used in faculty development sessions and clinical orientations to remind faculty of the expectations that are appropriate for learners at each stage of development as they proceed through training.
Some people who have poorly developed skills or limited knowledge are simply oblivious to their incompetence. In any group of professional students, some individuals will fall into a category that has been labeled “unskilled and unaware of it.” Unskilled and unaware students often reach erroneous conclusions, perform tasks ineptly, reach amazingly wrongheaded decisions, and repeatedly make unfortunate choices in their academic lives (as well as in their nonacademic lives), but are remarkably unaware of their incompetence. In fact, these individuals often have very high, although inaccurate, estimates of their abilities and are very confident, if not arrogant. As Charles Darwin once observed, “Ignorance more frequently begets confidence than does knowledge.”

Unskilled and unaware students have poorly developed metacognition, which is the brain’s self-assessment process that analyzes what we say and do (it allows us, for example, to think about what we’re doing) and distinguishes correct from incorrect actions and decisions. People with well-developed metacognition constantly self-correct and fine-tune their behavior and actions. This self-monitoring process allows people to make an appropriate assessment of their capabilities and to display a level of confidence that corresponds to actual ability. Students with poorly developed metacognition blunder from one error to the next, but have the mistaken impression that they are doing just fine. Researchers in neuroscience and cognition believe that poor metacognition is a fundamental component of incompetence.

Unskilled and unaware students who overestimate their capabilities and are overly confident can be challenging to teach. Research has shown that these individuals 1) rarely receive feedback that might help them develop an accurate view of reality, 2) do not learn from feedback unless it is very precise and frequent, and 3) do not learn by observing how other people function. It is unreasonable to expect that these students will fine-tune their performance by simply observing clinical teachers as they interact...
with patients. However, there is evidence that conducting debriefings with these students in which their decisions are carefully analyzed and compared to an ideal will help them develop metacognitive skills.40,44

Does the Student Have an Undiagnosed Learning Disability? Students in demanding professional training programs are unlikely to have an undiagnosed learning disability, but it should not be automatically ruled out. Often, students can cope with a learning disability at lower academic levels, only to fall apart upon entry into a professional program that requires extensive reading or careful attention to written instructions in laboratory manuals. Classic signs of a potential learning disability among late adolescents and adults include: 1) difficulty reading aloud, 2) difficulty comprehending the meaning of written material, 3) difficulty completing written tests on time, 4) failure to follow written instructions, 5) difficulty comprehending diagrams and flow charts, and 6) difficulty expressing thoughts and ideas in written form.51 None of these problems, alone, is diagnostic for a learning disorder, but it should raise your index of suspicion if it occurs in combination with other signs of substandard performance. Notably, there is a trend in the research literature—which is not conclusive but still frequently reported—of an association between a certain style of cognitive processing (reviewed in the next section of this paper) and a learning disability, particularly in curricula emphasizing perceptual and motor skills.39

If you have concerns about a student, alert the academic dean or program director by phone or in person. Teachers should not communicate a guess or hunch about a student’s possible learning disability in a memo or email message that can become a public record or verbally in a public forum. Your responsibility is to alert the program director and allow the university to follow up with a professional assessment.

Does the Student Have Difficulties with Perceptual Tasks or Motor Skills? Research by psychologists and neurophysiologists over the past fifty years demonstrates that human beings mentally process information and use visual, tactile, and auditory cues from their environment in dramatically different ways. These different types of information-processing apparently influence how individuals attempt to structure the environment in which they work or learn, how much they trust their own judgment versus the opinions of others, and how well they can perform certain tasks that require visual, spatial, and tactile perception.52-55 Although more research is needed, a person’s unique way of processing sensory stimuli may also influence his or her creativity, for example, the ability to think outside the box and see ways of doing things other people do not see. A person’s unique style of cognitive functioning also appears to influence the amount of guidance and structure desired when learning.

Much of the information-processing research is based on the field dependent-field independent construct of cognitive function.52,56 This model was proposed at the time of the Korean War (1950-53) to explain why some experienced World War II fighter pilots could maneuver the new and faster jet fighters and why others who had been successful in slower, propeller-driven aircraft had difficulty in jets. In fact, there were so many crashes in the early phases of training that the military sought the help of cognitive psychologists to determine why skilled pilots could not safely fly the new generation of jet planes. A series of cognitive tests was developed that involved such tasks as tracing images when they can be observed only by an inverted image in a mirror, stacking objects of various sizes and shapes, discerning geometric figures embedded within a larger and more complex image, and determining body position in space when subjects are physically rotated through various positions in a darkened room in which they can see only a rod within a square frame.

This battery of brain function tests identified two distinct ways in which the pilots processed information received from their senses. One group was determined to be field dependent (FD) because they relied heavily on their external environment (instruments, geographic landmarks, and the horizon) to make maneuvering decisions. When flying their aircraft at supersonic speeds (roughly twice as fast as the earlier propeller-driven planes), FD pilots did not have time to look around and locate the horizon, find geographic landmarks, or take more than a quick glance at their instruments. Without these external cues, many FD pilots could not determine if they were right side up or upside down, or whether their aircraft was gaining altitude or diving toward the earth. The other group of pilots was determined to be field independent (FI) because they had their own internal sense of direction and body position and thus did not rely extensively on external cues to make decisions. FI pilots could make the transition from the propeller-driven plane to the jet fighter because they did not need constant visual contact with the
horizon or the landscape below and did not rely heavily on instrument readings to make decisions.

There have been over 500 investigations of field dependence-independence (FDI) and how it influences personality variables (including mental health pathologies), academic performance, and athletic and musical tasks, as well as FDI’s relationship to physiological mechanisms such as motion sickness. These studies indicate that our unique way of processing information from the surrounding environment influences how we prefer to learn, how adept we are at certain fine motor visual-spatial-perceptual tasks, and how we interact with others in school or work environments. Tinajero et al. provide a comprehensive review of research based on the field independence and field dependence construct.56

Students who have difficulty learning psychomotor tasks (such as administering an intravenous injection) that require eye-to-hand coordination and ability to interpret tactile and visual stimuli may not be deficient because they have not studied or practiced. It may have something to do with the way they are “seeing and feeling” the object or, in fact, not seeing and feeling it. Notably, several studies have found that students with sub-par performance in motor skills training tend to have a field dependent orientation.57 As demonstrated in research pertinent to dental education, primarily conducted by Feil, Guenzel, and Knight,58-66 as well as other investigations of psychomotor learning, all students and particularly those who struggle with motor skills benefit from a well-organized instructional process that has the following characteristics introduced in the following sequence: 1) students can clearly see and analyze the desired end product; 2) students practice visualizing and/or drawing the desired end product; 3) students have opportunities to compare and contrast the desired outcome to examples of outcomes that are not acceptable; 4) students can observe the performance of the task by an expert practitioner who explains movements and procedures as they are executed; 5) during time-outs in the instructor’s demonstration, students can ask questions and request repeat demonstrations of components of the task; 6) students are actively coached during several initial attempts to perform the task; 7) students receive prompt comparison of how their work corresponds to the ideal outcome; 8) students are asked to analyze their work products and identify reasons for discrepancies from the ideal; 9) instructors provide specific advice about how to improve performance; and 10) students have ample opportunities to refine their performance.33,67-70 Research on the learning of procedural skills indicates that students who struggle with tasks requiring eye-to-hand coordination and perceptual accuracy (such as judging depth, width, angle, and separation distance) benefit from a precise application of these steps.33

The three most significant factors in the learning of procedural tasks are the quality of the initial instructor demonstrations, the quality and promptness of feedback, and the total amount of time the student devotes to learning the task. Instructors who employ the teaching steps identified above and who supplement demonstrations with illustrations, even hand-drawn sketches, and three-dimensional models produce better learning than instructors who do not.70-73 Prompt feedback and access to information about the results of a task are the techniques most likely to improve the performance of learners, particularly those who struggle with the skill.58,70,74 Supplemental practice on a task after criterion levels are achieved enhances long-term retention. Fifty percent overlearning is appropriate, but overlearning reaches a point of diminishing return. If it takes a dental student four attempts, for example, to master a particular type of restorative procedure, two more practice trials will enhance skill retention. However, additional trials may not improve performance.72,75-76

Additional Factors That May Cause Inadequate Performance

In addition to cognition issues, a number of additional factors can contribute to substandard student learning. When instructors are trying to pinpoint the reasons students are struggling, they should therefore ask themselves the following questions related to study habits, educational experience, distractions, the student’s self-concept, and possible underlying medical problems.

Does the Student Have Effective Study Habits? It is unlikely that a large number of students will reach an advanced level of professional training with poor study habits. However, we routinely encounter students who have sufficient native intelligence to get by with ineffective study methods for much of their academic career, but who struggle when they run into conceptually difficult material. Figure 4 reviews the characteristic study habits of high-achiev-
It is important to note that this figure presents general characteristics. Students who are high achievers may not exactly match the profile, and students who are underachievers may employ some of the desirable study methods. However, a large body of research supports the conclusion that the study methods of high-achieving and underachieving university students are often strikingly different.20,22-23,77-79

High-achieving students, for example, tend to be persistent and schedule a specific time block every day for reading and review. Underachievers rarely block out time for study and are easily distracted, often succumbing to social opportunities or diversionary activities like talking to friends on the phone or taking a break to watch television. High-achieving students are more likely to use active learning strategies such as writing detailed notes in class, reviewing class notes daily, interacting frequently with instructors, and self-quizzing. In contrast, underachieving students tend to approach their studies in a more passive manner. Finally, high-achieving students more often than not study in a quiet location, whereas students who are underachievers may prefer background sound from a radio or CD player and often study in high-traffic areas where they are likely to encounter people who might stop and talk.

<table>
<thead>
<tr>
<th>High-Achieving Learners</th>
<th>Underachieving Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Quiet & isolated from others</td>
<td>Background sound (music, TV)</td>
</tr>
<tr>
<td>Well-illuminated reading surface</td>
<td>May prefer dim lighting</td>
</tr>
<tr>
<td>Prefer to sit upright at desk</td>
<td>Seek comfort; read in bed or lying on sofa</td>
</tr>
<tr>
<td>Emotional</td>
<td></td>
</tr>
<tr>
<td>Set priorities & stick to them</td>
<td>Don’t stick to study plans; get distracted</td>
</tr>
<tr>
<td>Take responsibility for problems</td>
<td>Blame others or circumstances</td>
</tr>
<tr>
<td>Allocate time to finish tasks</td>
<td>Underestimate time needed to study</td>
</tr>
<tr>
<td>Sacrifice social life</td>
<td>Unwilling to sacrifice social time</td>
</tr>
<tr>
<td>Social</td>
<td></td>
</tr>
<tr>
<td>Willing to be “alone”</td>
<td>Need ongoing peer contact/stimulation</td>
</tr>
<tr>
<td>Self-reliant</td>
<td>Make decisions in conjunction with peers</td>
</tr>
<tr>
<td>Network with other good students (in the loop)</td>
<td>Associate with poor students or nonstudents</td>
</tr>
<tr>
<td></td>
<td>Often are “loners” (out of student loop)</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
<tr>
<td>Rely on multiple senses</td>
<td>Primarily tactile/kinetic</td>
</tr>
<tr>
<td>Study without activity breaks</td>
<td>Highly mobile (can’t sit still; fidgety)</td>
</tr>
<tr>
<td>Mentally alert in afternoon & pm</td>
<td>Difficulty studying during mid-day</td>
</tr>
<tr>
<td>Psychological</td>
<td></td>
</tr>
<tr>
<td>Both concrete & abstract</td>
<td>Primarily concrete thinkers</td>
</tr>
<tr>
<td>Good impulse control</td>
<td>Poor impulse control</td>
</tr>
<tr>
<td>Confident; receptive to critique</td>
<td>Defensive; avoid feedback</td>
</tr>
<tr>
<td>High expectations</td>
<td>Low expectations</td>
</tr>
<tr>
<td>Methods</td>
<td></td>
</tr>
<tr>
<td>Tend to be active learners:</td>
<td>Overly passive or overly independent:</td>
</tr>
<tr>
<td>* Self-quizzing while reading</td>
<td>* Dysfunctional study groups (too social)</td>
</tr>
<tr>
<td>* Write notes in class & review</td>
<td>* Inefficient study time (distractions)</td>
</tr>
<tr>
<td>* Ask questions during class</td>
<td>* Read passively (no notes or self-quizzing)</td>
</tr>
<tr>
<td>* Keep up with assigned reading</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>Persistent; grind it out</td>
<td>Low impulse control; easily distracted</td>
</tr>
<tr>
<td>Good impulse control</td>
<td>Kinetic; need physical activity</td>
</tr>
<tr>
<td>Active learning</td>
<td>Conflict between social & academic</td>
</tr>
<tr>
<td>Network = other good students</td>
<td>Network = poor students or nonstudents</td>
</tr>
<tr>
<td>Isolated study</td>
<td>Distracting study environment</td>
</tr>
</tbody>
</table>

Figure 4. Characteristic study habits of high-achieving and underachieving students
Are You Providing a Quality Educational Experience? As the saying goes, “We have met the enemy, and he is us.” This is a hard pill for teachers to swallow, but the sad truth is that substandard student performance is frequently associated with a substandard educational experience. When confronted with a consistent pattern of inadequate performance by more than a few students, the educational environment needs to be assessed. There are well-recognized ingredients for good practice in higher education programs,80-82 and the characteristics of quality teaching in the patient care environment of health care facilities have been identified in several literature reviews.83-88

Although countless questions can be asked to assess the learning environment, the authors have found the following items to be useful. Several “no” responses may be a red flag for a potentially substandard learning environment.

For all types of instruction:

- Do teachers communicate clear learning objectives to the student?
- Do students know how they will be evaluated and are the evaluation methods suitable to measure student attainment of course/rotation objectives?
- Is coursework well organized and presented in a stimulating manner that includes variety, fun, opportunities for frequent student interaction, including peer teaching, and frequent student-teacher contact both inside and outside of class?
- Is coursework structured so that students have opportunities to promptly use new information and employ active learning strategies such as analysis of cases or research projects?

For clinical rotations and preceptorships:

- Do students routinely receive coaching and suggestions before they encounter patients, or are students basically left to their own devices?
- Are students routinely observed while they interact with patients?
- Are instructors enthusiastic, available, and approachable, so that students are not afraid to request help or ask questions?
- Do instructors routinely give constructive feedback to students and reserve time in their schedules to meet with students to review progress?
- Do students have ample opportunity to observe clinicians’ providing patient care and to ask questions about techniques the students observed?

Figure 5 presents eleven teaching strategies that teachers can use to enhance learning. The authors consider the research support for these strategies to be extremely strong: each item has been found consistently effective over decades of research in numerous educational settings with many different kinds of learners. As a review of educational quality in your teaching program, readers are encouraged to check \[\] those methods you use frequently when working with students and mark methods with an “X” that are frequently employed by other instructors in your teaching program.

Is the Student Unusually Distracted? Students who are present in body but not in spirit or who seem easily distracted from routine tasks often have so much going on in their nonacademic lives that they cannot fully attend to the school component. Key symptoms of dysfunctional nonacademic distraction include forgetfulness, excessive amount of time on the phone or away from the clinical facility during work hours, sudden requests for time off, moodiness, concentration errors, unproductive time (daydreaming), dramatic changes in demeanor, sudden decline in performance, and unexplained tardiness or absences.

Faculty who sense such distractions should ask themselves two questions. First, what do I know about student’s personal/domestic situation? Many variables can become time- and energy-consuming distractions for the student, diverting attention away from the academic program. Financial concerns, domestic conflict with a spouse, outside employment, or the health of a spouse, children, or parents can become major sources of distraction. Students tend to be close-mouthed about these issues, and faculty often do not think of the students’ “other life.” Exploring nonacademic issues can be tricky and should be approached with caution. However, if the student’s level of distraction is such that his or her performance is unsatisfactory (especially if it has declined dramatically) or, in clinical education, if the overall functioning of the facility is affected, then it is your responsibility to share your concerns with the student.

The second question to ask is: is the student maintaining a lifestyle conducive to learning? Student readiness to learn can be dramatically influenced by lifestyle variables including diet, sleep (or lack thereof), caffeine consumption, alcohol consumption, and level of physical activity. A number of studies have documented an increase in drug use among postsecondary students over the past decade including several studies of health professions students.89-92 The most frequently consumed drug in all studies
Educational Quality Assessment:

☑ Check methods you use frequently when working with students now
☒ Mark methods other teachers in your academic program use frequently

☐ Give students learning objectives stated in the form of end-of-course expectations
 Example: At the end of this course, you will be expected to perform the following tasks...

☐ Provide opportunities for students to actively and quickly use “new” information
 • Ask students to explain their understanding of newly received information
 • Ask students to draw and explain concepts and techniques with flow charts or diagrams
 • Conduct activities in which students use new information within one day to explore a problem

☐ Give just in time (JIT) corrective feedback
 • Provide immediate corrective advice during and after performance
 • When errors or problems occur, feedback includes a prescriptive “how to correct” message
 • Ask student to self-identify errors and problems after completion of the task

☐ Provide priming just before task performance
 • Priming = Prompts, reminders, and alerts (e.g., watch out for this)
 • Priority questions = What is the most important information we need from Mr. Reynolds?
 • Anticipation questions = If Mrs. Jones cannot tolerate that test, what are our options?

☐ Activate learner emotions
 • Allow students to participate in challenging events that require hands-on learning
 • Provide opportunities for students to pursue a high priority personal interest
 • Provide novelty and variety: surprise, unexpected events, controversy, fun
 • Ask students to self-assess performance and identify corrections that are needed

☐ Encourage students to mentally or physically rehearse for performance
 • Mental (self-quizzing: visualization of task; re-copying notes taken in class)
 • Physical (slow-time walk-throughs; visualization; review videotapes of past performance)
 • Test prep: mock tests; in-class reviews with practice questions; student-led study groups

☐ Give students opportunities for multisensory interaction with subject matter
 Provide students with opportunities to learn by various methods: read, listen, see, touch, manipulate, observe experts in action and by DOING: discuss (explain verbally), ask questions, use information in a patient care task, evaluate performance of another person

☐ Allow students to make decisions
 • Ask students to make decisions and see the results of their decisions
 • Ask students to analyze why decisions were correct or incorrect

☐ Give students opportunities to do peer teaching (i.e., students teach students)
 • Collaborative learning (student-directed groups)
 • Assign students to research and teach a topic
 • Students proctor in labs and clinic

☐ Learners actively “encode” during lecture classes
 • Examples of encoding:
 → Writing notes during class
 → Reproducing “test notes” after class
 → Diagramming (mapping) the relationship between concepts
 → Explaining concepts “in their own words” during class (answering questions)

☐ Ask students to compare and contrast
 • Examples: Ask students to
 → Distinguish between correct and incorrect definitions or explanations of concepts
 → Recognize appropriate and inappropriate techniques
 → Compare and contrast the advantages/disadvantages of treatment approaches
 → Compare treatment outcomes (recognize satisfactory and not satisfactory outcomes)
 → Contrast (identify) differences among theories

Figure 5. Methods and activities that teachers can use to enhance learning
is alcohol, with more than 50 percent of students reporting at least weekly alcohol consumption and 10-20 percent of students reporting daily alcohol consumption. Alcohol consumption has been associated with inefficient study habits, poor academic performance, and an increase in the number of physical assaults by students. Unfortunately, the academic rigors of dental school leave little time for physical exercise, so many students drift into a couch potato routine in their limited free time. Declining physical condition, a fatty, fast-food diet, associated weight gain, and lack of sleep are ingredients for low energy and lethargic behavior.

What Is the Student’s Self-Concept and How Does This Affect Student-Teacher Interactions?

The amygdala plays a crucial role in the creation of memories associated with emotional arousal. Not surprisingly, heightened emotional arousal has been associated with increased learning. As a consequence of this research and the recognition that students’ attitudes play a profound role in how they approach learning tasks, measurement of the emotional sophistication of college and professional students has become a hot topic in recent years.

A number of instruments have been developed to assess emotional intelligence, which is defined as the ability to monitor one’s own emotions and the emotions of others and to use this information to guide thinking and actions. It is important for health professions educators to understand that learners travel along an emotional development continuum, which in many ways parallels the development of competence as they progress through the curriculum and through the stages of professional development. A student’s self-concept as a learner evolves dramatically through predictable phases as they grow from novice status when they enter professional school to a competent entry-level professional at the time of graduation.

The self-concept continuum depicted in Figure 6 illustrates how students see themselves at various stages of the competency development process. Students matriculate as unconscious incompetents who are excited to be entering professional training, optimistic about their performance, but naive about the rigors of the training and unaware of their limitations. In other words, they don’t know what they don’t know. The unconscious incompetent stage is the natural entry point of competency development and is different from the unskilled and unaware student discussed earlier. The unskilled and unaware student lacks the ability to self-monitor, which prevents the student from recognizing substandard performance and making corrections.

At some point in the first year of the curriculum, the learner’s self-concept shifts dramatically to conscious incompetent, which is the most characteristic stage of the novice learner. Students are now acutely aware of their limitations and realize that the road to competence will be long and arduous. Negative self-talk can dominate the novice learner’s inner conversations. This produces an undue focus on perceived deficiencies, which in turn stimulates efforts to hide these weaknesses from instructors, thus hin-

Figure 6. Evolution of learner self-concept during progression from novice to expert status

> Unconscious competent	Quick, accurate, confident, impatient, use shortcuts, sophisticated comprehension
> Conscious competent	Methodical, receptive to assistance, quality-oriented
> Conscious incompetent	Hesitant, frequent errors, low confidence, acutely aware of limitations, defensive, negative self-talk; secretive
> Unconscious incompetent	Optimistic, eager, and enthusiastic but also naive and uninformed

dering the learning process. Students at this point of the continuum are defensive, which may manifest itself in passive-aggressive behavior (often incorrectly perceived by faculty as apathy or lack of motivation) or overt hostility (perceived correctly as a bad attitude). Teachers may view students in the conscious incompetent stage as frustrating and difficult to teach. Indeed, conscious incompetents may be secretive and attempt to minimize interaction with teachers.

At this stage, students hesitant to deviate from rules and guidelines, and are reluctant to make their own decisions for fear of making errors. They have little patience for abstractions or alternatives, desiring instead precise directions from instructors, such as “Just tell me what to do!” Instructors who understand the etiology of such defensiveness can be particularly helpful to the novice student with a fragile conscious incompetent mind-set by providing encouragement, practical suggestions consistent with the student’s skill level, extensive hands-on but nonjudgmental assistance, and praise for accomplishments, even partial successes. Students in professional school may spend the bulk of the curriculum in the conscious incompetent phase.

Students slowly evolve with repetitive practice and instructor coaching into conscious competents. Students at this level perform somewhat mechanically by the numbers because they must think carefully about everything they do (thus the conscious competent label). During the conscious competent phase, students drop their defensive shields and actively seek assistance from teachers. They worry less about what others think of their performance, focusing instead on the quality of the work they perform for the patient. Work performance is not as fluid and effortless as the expert practitioner, but the conscious competent can, with adequate time and limited distractions, perform the tasks expected of the unsupervised entry-level practitioner.

Expert practitioners are known as unconscious competents because they routinely perform the tasks of their profession at a high level of quality and efficiency without expending a great deal of brainpower. Over the years, expert practitioners have hardwired needed knowledge and skills into their brains and, consequently, do not overtly think about each step in a task, a level of intellectual development called automaticity by cognitive psychologists. Unconscious competents can take mental short-cuts because they can automatically recognize important cues when studying a problem and quickly leap to a solution with a high probability of success. The length of time and amount of experience required to reach an unconscious competent, expert status have been the subject of speculation, with estimates ranging from ten to fifteen years.56,97

The self-concept continuum has significant implications for teachers. The primary communication dyad in health professions education is a teacher who is an expert and an unconscious competent, interacting with a student who is a conscious incompetent. A review of the words and phrases below that describe each of these individuals underscores the potential for misunderstanding and conflict when unconscious competents and conscious incompetents attempt to work together. In some ways, this expert-novice dyad is like mixing oil and water.

<table>
<thead>
<tr>
<th>Unconscious competent (teacher/expert)</th>
<th>Conscious incompetent (student/novice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick; uses mental short-cuts (automaticity)</td>
<td>Hesitant</td>
</tr>
<tr>
<td>Accurate</td>
<td>Frequent errors</td>
</tr>
<tr>
<td>Confident</td>
<td>Low confidence; acutely aware of limitations</td>
</tr>
<tr>
<td>Impatient</td>
<td>Defensive; secretive; seeks to hide weaknesses</td>
</tr>
</tbody>
</table>

Because of their quickness and accuracy and the confidence that results from frequent success, experts tend to expect everyone to perform at a similar high level of proficiency and become impatient with a student’s less-developed skills. A student’s slow and hesitant approach to a task, frequent errors, and defensiveness may lead the teacher to conclude that the student is dim-witted or hopelessly incompetent. In reality, the student may be demonstrating an appropriate level of skill for his or her training level. However, many teachers lose sight of what is level-appropriate performance and focus on the student’s deficiencies. This further reinforces the student’s conscious incompetent self-concept, fostering more defensiveness by the student and more frustration by the teacher and sending the relationship into a downward spiral.

The P-E-T model presented in Figure 7 (Prime, Partition and Praise, Empathy, Teach) was developed by the authors for use in faculty development workshops. It is intended to remind teachers of strategies that can be employed to reduce the prototypical de-
The P–E–T model (Prime, Partition & Praise, Empathy, Teach) for helping conscious incompetent students

<table>
<thead>
<tr>
<th>Prime</th>
<th>Before students undertake a task, prime (prepare) them by coaching through the key elements of the task and alerting them to possible problems. Ask students how they will deal with problems that may arise.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Partition</td>
<td>Allow students to build from success by assigning manageable tasks early in the rotation and then expand the scope of responsibilities.</td>
</tr>
<tr>
<td>Praise</td>
<td>Ample doses of praise for tasks performed well are essential. Words of encouragement when problems are encountered are also essential.</td>
</tr>
<tr>
<td>Empathy</td>
<td>Share your problems from when you were a student, including stories about errors you made and how you improved your performance. Make it clear that you know that professional training is a developmental continuum and that mistakes will occur, especially early in the learning curve.</td>
</tr>
<tr>
<td>E Expectations</td>
<td>Your coaching and feedback will be more on target and you can avoid unreasonable expectations (usually, too high) by investigating what students can and cannot do at this level of training.</td>
</tr>
<tr>
<td>T Teach</td>
<td>Coach actively with demonstrations, rehearsals, and helpful feedback.</td>
</tr>
<tr>
<td>Help</td>
<td>Focus on helping the student learn, rather than evaluating performance. Help the student identify skills that need work and special interests he or she wants to pursue. Create opportunities for students to work on these skills and interests.</td>
</tr>
<tr>
<td>Model</td>
<td>Show the importance of self-critique by requesting feedback from your peers while the student is watching and self-assess your own performance while the student is listening.</td>
</tr>
</tbody>
</table>

Figure 7. The P–E–T model (Prime, Partition & Praise, Empathy, Teach) for helping conscious incompetent students.
tion is required. Reviews of clinical teaching effectiveness consistently indicate that the teachers perceived to be the most helpful by learners take a proactive coaching role before, during, and after patient appointments using demonstrations, reminders, rehearsals, prompting questions, and nonjudgmental feedback to guide the student’s learning. These exemplary teachers primarily focus on helping students develop skill and learn how to correct mistakes, rather than evaluating performance.

Is There an Underlying Medical Problem That Should Be Considered? Lee Robertson’s article in this issue, “Memory and the Brain,” provides an excellent review of the complex cellular and molecular mechanisms that control memory formation. Abnormal brain chemistry, induced by high levels of stress, hormonal imbalances, thyroid dysfunction, other systemic diseases such as hypertension, and insufficient sleep, can contribute to attention disorders, concentration difficulties, and affective (emotional) abnormalities that may impair the brain’s capacity to create memories and thus interfere with a person’s capacity for learning. For example, stress appears to have a particularly adverse effect on the hippocampus, which is centrally involved in memory formation. Loss of sleep, thyroid dysfunction, and alcohol can also impair normal hippocampal function. The scope of abnormalities at the cellular and molecular level as well as dysfunctions in the brain structures involved in memory creation are too complex to address here, but are mentioned because teachers should include chemical and physiological abnormalities in their index of suspicion when other causes of substandard learning have been ruled out. If you have well-founded reasons to be concerned about a student’s health, contact the academic dean at your school by telephone and share your observations. Again, do not communicate unconfirmed hunches about student performance or behavior in a memo or email.

Summary: Potential Causes of Learning Deficiency

When a student inexplicably struggles with routine assignments and falls behind classmates, busy teachers who are juggling patient care, educational, research, and even administrative responsibilities might be tempted to either pigeonhole the student as slow or hopeless, give up on the student, or grow frustrated from failed efforts to bring the student up to speed. Well-intentioned efforts to rehabilitate a struggling student by providing more repetitions or more time in a clinical environment may fail because the specific cause of the subpar performance was not clearly identified.

Simply “throwing more education at the student” may not be the answer. Rather, six potential causes of inadequate student performance can serve as a diagnostic framework to help teachers more clearly pinpoint why a student is struggling academically: 1) cognitive factors including poorly integrated, compartmentalized information, poor metacognition which hinders the student’s ability to accurately monitor and self-correct performance, learning disabilities which require professional referral, and sensory-perceptual difficulties which may hinder performance in certain health care disciplines; 2) ineffective study habits which, from our experience, are more common among professional students than most faculty realize; 3) an inadequate educational experience including substandard curriculum quality (unclear objectives, poorly organized instruction, lack of opportunity to practice problem-solving, absence of coaching and feedback) or a punitive environment in which students are hesitant to approach instructors for assistance; 4) a high level of student distraction due to nonacademic issues including social relationships, employment obligations, and worry over health and financial issues; 5) student defensiveness and hesitancy to interact with faculty during the conscious incompetent stage of learning; and 6) underlying, and perhaps undetected, medical etiologies which may affect student attentiveness, concentration, and emotional balance.

REFERENCES
89. Smart RG, Ogbourne AC. Drinking and heavy drinking by students in 18 countries. Drug Alcohol Dependence 2000;60:315-8.